(a) **To explain and describe acid-base chemistry using the Henderson-Hasselbach equation.**

Definition of acid and base:
- “Bronsted-Lowry definition” is most commonly accepted in medicine:
 - Acid – Substance that donates a proton or hydrogen ion to another in solution
 - Base – Substance that accepts protons or hydrogen ions from another in solution

<table>
<thead>
<tr>
<th>Alternative definitions of acid-base include:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- “Arrhenius definition”:</td>
</tr>
<tr>
<td>- Acid – Substance that dissociates in H₂O to produce H⁺</td>
</tr>
<tr>
<td>- Base – Substance that dissociates in H₂O to produce OH⁻</td>
</tr>
<tr>
<td>- “Lewis definition”:</td>
</tr>
<tr>
<td>- Acid – Substance that can accept an electron pair</td>
</tr>
<tr>
<td>- Base – Substance that can donate an electron pair</td>
</tr>
</tbody>
</table>

Overview of Hydrogen ion (H⁺):
- H⁺ is a hydrogen atom without its orbital electron → essentially a “proton”
- In aqueous solution, H⁺ is hydrated to form a “hydronium ion” (H₃O⁺):

\[
H^+ + H₂O \rightarrow H₃O^+
\]
- “H⁺ activity” (\(A_{H^+}\)) is a measure of how many H⁺ “seem” to be present in solution →

This is determined by:
- (i) Activity coefficient of H⁺ (g)
- (ii) Concentration of H⁺ ([H⁺]) – Quantity of H⁺ “actually” present in solution

\[
A_{H^+} = g \ [H^+]
\]

Note: \(A_{H^+}\) is synonymous with [H⁺] → because [H⁺] \(\approx\) \(A_{H^+}\)

Overview of pH system:
- pH is defined as the –ve base-10 logarithm of H⁺ activity (\(A_{H^+}\)) (where [H⁺] \(\approx\) \(A_{H^+}\)) → It serves as an indirect measure of H⁺ activity (and [H⁺]) in solution

\[
pH = -\log_{10} (A_{H^+}) \approx -\log_{10} [H^+]
\]
- pH and \(A_{H^+}\) (or [H⁺]) are inversely related in a non-linear fashion due to the log₁₀ scale (i.e. ↓ 1 unit pH = 10x ↑ \(A_{H^+}\) or [H⁺])
pH \ [H^+] \ (\text{nmol/L})

<table>
<thead>
<tr>
<th>pH</th>
<th>[H^+] (nmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.8</td>
<td>16</td>
</tr>
<tr>
<td>7.7</td>
<td>20</td>
</tr>
<tr>
<td>7.6</td>
<td>25</td>
</tr>
<tr>
<td>7.5</td>
<td>31</td>
</tr>
<tr>
<td>7.44</td>
<td>36</td>
</tr>
<tr>
<td>7.4</td>
<td>40</td>
</tr>
<tr>
<td>7.36</td>
<td>44</td>
</tr>
<tr>
<td>7.3</td>
<td>50</td>
</tr>
<tr>
<td>7.2</td>
<td>62</td>
</tr>
<tr>
<td>7.1</td>
<td>80</td>
</tr>
<tr>
<td>7.0</td>
<td>100</td>
</tr>
</tbody>
</table>

- “Neutral pH” is the pH at which \([H^+] = [OH^-]\) → this is temperature dependent

Neutral point of H\(_2\)O is pH 7 at 25°C and 6.8 at 37°C (pH of neutral H\(_2\)O ↑0.017 unit for every 1 °C ↓ in temperature)

Overview of Dissociation Constant (K) and pKa:
- In solution, an acid (HA) will dissociate to a base (A\(^-\)) and H\(^+\):

\[
\begin{align*}
\text{HA} & \xrightleftharpoons[k_2]{k_1} \text{H}^+ + \text{A}^- \\
\text{rate of } & \text{HA} \rightarrow \text{H}^+ + \text{A}^- \quad \text{rate of } \text{H}^+ + \text{A}^- \rightarrow \text{HA}
\end{align*}
\]

\[
K = \frac{[\text{A}^-][\text{H}^+]}{[\text{HA}]}
\]

“Dissociation constant” (Ka) is the proportion of relative reactions present at equilibrium → Ratio of \(k_1:k_2\) (ie. \(K>1\) means \(k_1>k_2\) such that more HA dissociates into H\(^+\) and \(\text{A}^-\), than HA reassociates from H\(^+\) and \(\text{A}^-\))

- pKa is calculated as the –ve base-10 logarithm of the dissociation constant (K) of a substance → It is defined as the pH at which a substance is 50% dissociated (or ionised) in solution

\[
pKa = -\log_{10} (K)
\]

- pKa is an indirect measure of the extent of dissociation of the substance in solution (ie. \(\text{HA} \rightarrow \text{H}^+ + \text{A}^-\)) → in doing so, it determines its strength of acidity in solution

\[
\downarrow \text{pKa means } \uparrow \text{dissociation and stronger acid}
\]
\[
\uparrow \text{pKa means } \downarrow \text{dissociation and weaker acid}
\]

Henderson-Hasselbach Equation:

\[
\text{pH} = \text{pKa} + \log ([\text{A}^-]/[\text{HA}])
\]
This equation demonstrates that the ability of a substance to either donate a proton (i.e., act as an acid (HA)) or accept a proton (i.e., act as a base (A⁻)) depends on two factors:

- (i) pH of the solution
- (ii) pKa of the substance

Derivation of Henderson-Hasselbach equation:

\[
\begin{align*}
\text{HA} & \overset{k_1}{\underset{k_2}{\rightleftharpoons}} H^+ + A^- \\
\text{So,} \quad \frac{k_1}{k_2} &= \frac{[H^+][A^-]}{[\text{HA}]}, \\
\text{CH}_a \cdot k_1 &= k_2 \cdot [H^+] \cdot [A^-] \\
[H^+] &= \frac{k_2 \cdot [\text{HA}]}{[A^-]} = K \cdot \frac{[\text{HA}]}{[A^-]} \\
\log_{10} \text{both sides}, \text{ so:} \\
-\log_{10} [H^+] &= -\log_{10} K \cdot \frac{[\text{HA}]}{[A^-]} \\
\text{pH} &= \text{pK}_a + \log \frac{[A^-]}{[\text{HA}]}
\end{align*}
\]
(b) To describe the chemistry of buffer mechanisms and to explain their relevant roles in the body.

(c) To describe the regulation of acid-base balance.

H⁺ Balance in the Body:

- **H⁺ production in the body:**
 - (1) “Volatile acids” (aka. “Respiratory acids”)
 - CO₂ is produced by [O] metabolism of carbohydrates and triglycerides (Ie. decarboxylation in TCA cycle) → Majority (75%) is hydrated in plasma to form Carbonic acid (H₂CO₃)
 - H₂CO₃ produces 15000 mmol H⁺/day
 - “Volatile acids” do NOT contribute to net acid balance in the body → because all H₂CO₃ in plasma is reformed as CO₂ in the lungs and eliminated
 - (2) “Non-volatile acids” (aka. “Metabolic acids” or “Fixed acids”)
 - (a) Lactate production
 - Produced from anaerobic metabolism of glucose and glycogen in RBC, skin and skeletal muscle → Produces 1500 mmol H⁺/day
 - Does not contribute to net acid balance in the body → because lactate is oxidised in the liver to regenerate HCO₃⁻ (via Cori cycle) → Exception is with excessive production (Ie. lactic acidosis with tissue hypoxia)
 - (b) Sulphuric acid
 - Produced from metabolism of S-containing a.a (esp Cys and Met) → Produces of 45 mmol H⁺/day
 - (c) Phosphoric acid
 - Produced from hydrolysis of phosphoproteins → Produces 13 mmol H⁺/day
 - (d) Other acids (Eg. HCl produced from a.a. metabolism, ketoacids produced from fat metabolism, Etc.) → Produces 12 mmol H⁺/day

Note:
- These acids are termed “Fixed acids” because they cannot be excreted by the lungs → Must be excreted by the kidneys (sulphuric acid, phosphoric acid and other acids) or metabolised by the liver (lactate)
- They contribute to net acid balance in the body → Normally produced at 1-1.5 mmol H⁺/kg/day (or ~ 70 mmol H⁺/day) → Thus, to maintain acid-base balance, these “fixed acids” must be completely excreted!

- **H⁺ excretion from the body:**
 - (1) Lungs
 - Eliminate all “volatile acids” (H₂CO₃) → 15000 mmol H⁺/day
 - (2) Liver
 - Eliminates “fixed acids” (mainly lactate) → 1500 mmol H⁺/day
 - (3) Kidney
 - Eliminates “fixed acids” (mainly phosphoric acid, sulphuric acid, other acids) as NH₄⁺ and “titratable acids”
 - Accounts for at least 70 mmol H⁺/day → 30 mmol/day as “titratable acids” and 40 mmol/day as NH₄⁺
Acid-base balance in the body:
- To maintain acid-base balance (and pH) in the body → Daily acid production must EQUAL daily acid excretion → So “Net acid balance” must equal ZERO

Net acid balance (NAB) = Net acid production (NAP) – Net acid excretion (NAE)

- Net acid production (NAP):
 - Normally ~ 70 mmol of H⁺ is produced daily from “fixed acids” (esp phosphoric acid, sulphuric acid, other acids)
- Net acid excretion (NAE):
 - Normally all “fixed acids” produced are excreted by the kidneys (~ 70 meq/day) → 30 mmol/day as “titratable acids” and 40 mmol/day as NH₄⁺
 - Almost all filtered HCO₃⁻ is reabsorbed → HCO₃⁻ excretion ~ 0 mmol/day

Overview of Acid-Base Homeostasis:
- [H⁺] in body fluid is precisely regulated → maintained at low plasma [] of 40 nmol/L (normal range 35-45 nmol/L) to keep extracellular pH ~ 7.4 (normal range pH 7.35-7.44) and intracellular pH ~ 6.8

Derangements of [H⁺] and pH can result in systemic effects (Eg. altered CNS reflexes, CVS depression, Etc.; See below) as a result of direct intracellular disturbances:
- (i) Altered protein function (Eg. enzyme activity, transporter activity, Etc.)
- (ii) Altered membrane excitability
- (iii) Disruption in metabolic pathways (esp energy production)
- (iv) Ion trapping of biological molecules in compartments, Etc.

This tight regulation of [H⁺] and pH is achieved by the following processes:
- (1) Buffering (1st line of defence) – Systems that immediately minimise changes in pH in the event that an acid or base is added to the body
- (2) Compensation (2nd line of defence) – Physiological processes that attempts to normalise pH by restoring the HCO₃⁻/PCO₂ ratio to normal → Either respiratory (rapid; mins-hrs) or renal (slow; hrs-days) → pH generally not completely restored to 7.4

<table>
<thead>
<tr>
<th>Process</th>
<th>H⁺ balance (mmol/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production:</td>
<td></td>
</tr>
<tr>
<td>CO₂ (as H₂CO₃)</td>
<td>15,000</td>
</tr>
<tr>
<td>Lactate</td>
<td>1500</td>
</tr>
<tr>
<td>Sulphuric acid</td>
<td>45</td>
</tr>
<tr>
<td>Phosphoric acid</td>
<td>13</td>
</tr>
<tr>
<td>Others (HCl, ketoacids)</td>
<td>12</td>
</tr>
<tr>
<td>Output:</td>
<td></td>
</tr>
<tr>
<td>Lungs</td>
<td>15,000</td>
</tr>
<tr>
<td>Liver</td>
<td>1500</td>
</tr>
<tr>
<td>NH₄⁺</td>
<td>40</td>
</tr>
<tr>
<td>Titratable acids</td>
<td>30</td>
</tr>
</tbody>
</table>
(3) Correction (3rd line of defence) – Mechanism that corrects acid-base derangement through correction of primary disorder

Acid-Base Homeostasis: Buffering

Overview of buffer systems:
- A “buffer” is a solution containing a weak acid and its conjugate base → Resists profound pH changes when exposed to a stronger acid or base by reversibly binding H⁺

\[
\text{Buffer} + H^+ \leftrightarrow H_\text{Buffer}
\]

- Effectiveness of a buffer is dependent on:
 - (i) Amount of buffer present → ↑ [buffer] ↑ the effectiveness of the buffer
 - (ii) Buffer’s pKa and pH of the carrier solution → Majority of buffering activity (80%) occurs within +/- 1 pH of the buffer’s pKa, with the maximal effect at its pKa (thus buffer effectiveness ↑ if buffer pKa and solution pH within +/- 1 unit)
 - (iii) “Open” (physiological) vs “closed” (chemical) buffer system → Buffer effectiveness ↑ with open systems

Buffering systems of the body:
- There are two types of buffer systems in body:
 - (1) Bicarbonate buffers (H₂CO₃-HCO₃⁻ buffer system) → Can only buffer “fixed/metabolic” acids (because it cannot buffer itself)
 - (2) Non-bicarbonate buffers (Hb, Phosphate and Protein buffer systems) → Can buffer both “respiratory” and “fixed/metabolic” acids

- Extracellular buffering:
 - (1) Blood – Mainly HCO₃⁻ and Hb (proteins and PO₄⁻ have minor roles)
 - (i) RBC – 1°ly Hb (35%; buffers 90% of H₂CO₃ and HCO₃⁻ (18%); proteins and PO₄⁻ are negligible
 - (ii) Plasma – 1°ly HCO₃⁻ (35%; buffers 70% of “metabolic” acids), protein (7%) and PO₄⁻ (2%)
 - (2) ISF – 1°ly HCO₃⁻ (ISF has ↑ capacity to buffer “metabolic” acids than blood because ISF volume (and HCO₃⁻ content) is 3x ↑ cf. blood)

- Intracellular buffering:
 - (i) 1°ly protein and PO₄³⁻ → because they occur at ↑ [] intracellularly and have pKa’s closer to intracellular pH (~ 6.8)
 - (ii) Fixed acid extrusion → Extrusion of IC H⁺ in exchange for a strong electrolyte (Na⁺, Cl⁻, lactate) via an anti-port transporter
 - (iii) Organellar buffering → Sequester or release H⁺ from IC organelle
 - (iv) Metabolic buffering → Alter production of acidic metabolites

“Isohydric principle” – All buffer systems in solution in the body that participate in defence of acid-base changes are in equilibrium with each other (i.e. changing pH will affect all buffer pair ratios in solution)

Bicarbonate-carbonic acid (HCO₃⁻-H₂CO₃) buffer system:
- Consists of H₂CO₃ (weak acid) and HCO₃⁻ salt (NaHCO₃ in ECF; KHCO₃ or Mg(HCO₃)₂ in ICF):

\[
\text{CO}_2 + \text{H}_2\text{O} \rightarrow \text{H}_2\text{CO}_3 \leftrightarrow \text{H}^+ + \text{HCO}_3^-
\]

* Carbonic anhydrase (CA) is found in – (i) RBC, (ii) Alveolar walls, (iii) Renal tubular cells, and (iv) Renal PCT brush border
o In presence of strong acid – H^+ from acid buffered by HCO_3^- → shifts to production of CO_2 production (via H_2CO_3) → CO_2 excreted from lungs
o In presence of strong base – Buffered by H_2CO_3 → Forms HCO_3^- which is excreted from kidneys

- Most important buffer in ECF (RBC, plasma and ISF) → 80% buffering capacity:
 o It’s low pKa (6.1) relative to physiological pH and relatively small amounts in ECF ↓ its effectiveness as a buffer system in ECF
 o BUT this is offset by the fact that the system is “open” system → Can be controlled independently by the:
 - (i) Lungs – Excretion of CO_2 (or H_2CO_3) regulated rapidly by changes in minute ventilation
 - (ii) Kidneys – Excretion of HCO_3^- and H^+ regulated more slowly

Note: Henderson-Hasselbach equation can be modified to relate the pH of blood to constituents of this buffer system:

$$pH = pKa + \log ([A^-]/[HA])$$

- pKa of H_2CO_3 is 6.1
- $[H_2CO_3]$ cannot be measured in blood due to its rapid dissociation to $HCO_3^- + H^+$
 Thus, $[H_2CO_3]$ is estimated by amount of dissolved CO_2

$$[H_2CO_3] = \text{solubility coefficient of } CO_2 \times \text{PCO}_2 = 0.03 \times \text{PCO}_2$$

Thus: $$pH = 6.1 + \log ([HCO_3^-]/0.03x\text{PCO}_2)$$

Haemoglobin (Hb) buffer system.
- Hb is an intracellular protein in RBCs BUT acts as the major non-HCO_3^- buffer in ECF
- Mechanisms for buffering capacity of Hb:
 o (1) ↑ [Hb] within RBCs (150 g/L) → Large amount of buffer present
 o (2) Structure of Hb
 - (a) Multiple (38) Histidine residues with Imidazole side chain (pKa 6.8) on globin chains of Hb → Anionic sites on Imidazole binds H^+ →
 Contributes to MAIN buffering capacity of Hb at physiological pH
 - (b) Amino acid groups on globin chains of Hb → CO_2 and H_2CO_3 can bind with terminal amino groups of amino acids of Hb to form “carbamino compounds”

$$HbNH_2 + CO_2 \rightarrow HbNHCOO^- + H^+$$
$$HbNH_2 + H_2CO_3 \rightarrow HbNH_3 + HCO_3^-$$

Nb. This accounts for 15% CO_2 transport in blood

- (3) Hb is a weak acid
 - Hb exists as weak acid (HHb) and salt (KHb) with a pKa 6.8 → it is an even weaker acid cf. $HCO_3^- - H_2CO_3$ buffer system (pKa 6.1)

$$HCl + KHb \rightleftharpoons HHb + KCl$$
$$\uparrow$$
$$H^+ + Hb^-$$

$$H_2CO_3 + KHb \rightleftharpoons HHb + KHCO_3$$
Thus, in presence of ECF acid \rightarrow Hb buffers extracellular H$^+$ \rightarrow leads to HCO$_3^-$ formation within RBC \rightarrow HCO$_3^-$ accumulates and diffuses down its electrochemical gradient out of RBC \rightarrow ↑ plasma HCO$_3^-$

- (4) RBC contains carbonic anhydrase and has ↑ solubility for CO$_2$:
 - Hb contributes to $>90\%$ of blood capacity to buffer CO$_2$ (as H$_2$CO$_3$)
 - Tissue CO$_2$ diffuses into RBC whereby it is hydrated to form H$_2$CO$_3$ by CA \rightarrow (i) H$^+$ produced then preferentially binds DeoxyHb (to form Reduced Hb), thus allowing offloading of O$_2$ to tissues, and (ii) HCO$_3^-$ produced diffuses down its electrochemical gradient out of RBC \rightarrow ↑ plasma HCO$_3^-$

- (5) DeoxyHb is a better buffer than OxyHb (Haldane Effect)
 - DeoxyHb (pKa 8.2) is a better buffer than OxyHb (pKa 6.6) because it is a weaker acid and dissociates to a greater extent
 - In tissue capillaries \rightarrow OxyHb unloads O$_2$ to form DeoxyHb \rightarrow This facilitates:
 - Uptake and buffering of extracellular H$^+$ (as reduced Hb; HHb) produced from hydration of tissue CO$_2$ and dissociation of H$_2$CO$_3$ \rightarrow 30% Haldane effect
 - Uptake of tissue CO$_2$ (as carbamino compounds) \rightarrow 70% Haldane effect
 - Thus, pH venous blood is only slightly more acidic than arterial blood in spite of large tissue CO$_2$ produced daily!

"Isohydric buffering" – For each mmol OxyHb that is reduced, 0.7mmol H$^+$ can be taken up by Hb, and 0.7mmol CO$_2$ can enter venous system without significantly changing pH

Note: Despite being a protein, Hb has 6x ↑ buffering capacity than protein proteins because
- (i) [Hb] is 2x of plasma protein
- (ii) Hb has 3x buffering capacity gram per gram that of plasma protein \rightarrow due to 3x ↑ content of imidazole-containing histidine residues

Protein buffer system:
- Amino acid side chains can buffer H$^+$:
 - Most amino groups (pKa 9) and carboxyl groups (pKa 2) have pKa very far from physiological pH \rightarrow Contributes little to buffering
 - Imidazole group on Histidine (pKa 6.8) has the closest pKa to physiological pH \rightarrow Most important amino acid in proteins for buffering (esp in Hb; See above)
- Much more important buffer in ICF (cf. ECF) because \rightarrow (i) [proteins] intracellularly are much ↑, and (ii) intracellular pH is more acidic (le. closer to pKa of amino acid moieties)

Phosphate buffer system:
- Phosphoric acid is a tribasic acid:
Main buffer intracellularly and in urine because → (i) [] are much ↑, and (ii) intracellular and urine pH are more acidic (i.e. closer to pKa of phosphate buffers)

Note: Despite biphosphate (H2PO4−) buffer having pKa very similar to physiological pH, it plays a minor role in extracellular buffering due to its low content in ECF and "closed" buffer system

- Important in “bone buffering” → CaPO4 acts as “Alkali reserve” → During prolonged acidosis, it solubilises in plasma to ↑ [PO4 3−]}

Acid-Base Homeostasis: Compensation

Respiratory compensation:
- This compensatory response is characterised by a very rapid and high capacity excretion of “respiratory acids” (~ 15,000 mmol H+/day as CO2) by the lungs → Nb. it does NOT involve excretion of “metabolic/fixed acids”
- Compensatory response involves two steps:
 o (1) PaCO2 is altered by changing minute ventilation
 Remember: PaCO2 = 0.83 x VCO2 / Va
 o (2) Change in PaCO2 normalises the [HCO3−]/PaCO2 ratio → Minimises changes in pH caused by acid-base disturbance
 Remember: pH = 6.1 + log ([HCO3−]/0.03xPCO2)

For example:
- During metabolic acidosis (↓ pH, ↑ [H+], ↓ [HCO3−]) → Induces hyperventilation → Lowers PaCO2 and normalises [HCO3−]/PaCO2 ratio
- During metabolic alkalosis (↑ pH, ↓ [H+], ↑ [HCO3−]) → induces hypoventilation → Increases PaCO2 and normalises [HCO3−]/PaCO2 ratio

- Regulation of respiratory compensation:
 o (i) Peripheral chemoreceptors (located in aortic and carotid bodies)
 ▪ Respond to ↓ arterial pH, ↓ PaO2 and ↑ PaCO2 → stimulate medullary ventilatory centres
 ▪ Nb. Minor role in responding to ↑ PaCO2 (only 20%) → BUT important for sensing acute changes in PaCO2
 o (ii) Central chemoreceptors (located in medulla)
 ▪ Responds to H+ in adjacent brain ECF (which is formed from CO2 traversing the BBB; and NOT plasma H+ which is insoluble in BBB) → stimulate medullary ventilatory centres
 ▪ Major role in responding to ↑ PaCO2 (80%)
 ▪ [HCO3−] in brain ECF equilibrates slowly (over 24 hrs) → alters chemoreceptor sensitivity in the event of prolonged acidosis

Note: MV ↑ 2L/min for every mmHg ↑ in PaCO2 from normal

Renal compensation:
- This compensatory response is characterised by a very slow (7-10 days) and low capacity
excretion of “fixed/metabolic acids” (~ 70 mmol H+ /day) → normalises the [HCO₃⁻]/PaCO₂ ratio → Minimises changes in pH caused by acid-base disturbance

Note: This is the ONLY means of excreting “fixed acids” (Except for lactate → metabolised by liver)

- Renal regulation of acid-base balance involves tubular H⁺ secretion:
 o At least 4390 mmol H⁺ is actively secreted by kidneys each day:
 ▪ (i) Majority is used to reabsorb filtered HCO₃⁻ → 4320 mmol H⁺ is actively secreted by the tubular system each day to facilitate reabsorption of all 4320 mmol HCO₃⁻ filtered by the glomerulus (24 mmol HCO₃⁻ /L x 180 L/day = 4320 mmol) → this does not lead to net excretion of H⁺ in urine or addition of new HCO₃⁻ to blood
 ▪ (ii) Additional 70 mmol H⁺ is actively secreted to excrete “fixed/metabolic” acids to achieve a “net acid balance” of zero → 30 mmol/day as filtered buffers (titratable acids) and 40 mmol/day as manufactured buffers (NH₄⁺) → this leads to net excretion of H⁺ in urine (and addition of new HCO₃⁻ to blood)
 o During acidosis:
 ▪ (a) Tubular H⁺ secretion leads to all filtered HCO₃⁻ being reabsorbed
 ▪ (b) Excess H⁺ is secreted and lost in urine bound to non-absorbable buffers (filtered buffers and manufactured buffers) → results in an additional 300 mmol H⁺ excreted in urine per day (mainly bound to NH₄⁺) and an additional HCO₃⁻ added to blood
 o During alkalosis, excess plasma HCO₃⁻ (> 28 mmol/L) is excreted in urine by:
 ▪ (a) Loss of filtered HCO₃⁻ (Ie. not all is reabsorbed in tubular system)
 ▪ (b) Secretion of HCO₃⁻ from “type B intercalated cells” in CCD

Summary of “net acid excretion”:

<table>
<thead>
<tr>
<th></th>
<th>Normal</th>
<th>Acidosis</th>
<th>Alkalosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Titratable acids (mmol/day)</td>
<td>30</td>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>NH₄⁺ (mmol/day)</td>
<td>40</td>
<td>160</td>
<td>0</td>
</tr>
<tr>
<td>HCO₃⁻ (mmol/day)</td>
<td>0</td>
<td>0</td>
<td>80</td>
</tr>
<tr>
<td>NAE / “New” HCO₃⁻ added (mmol/day)</td>
<td>+70</td>
<td>200</td>
<td>-80</td>
</tr>
<tr>
<td>Urine pH</td>
<td>6.0</td>
<td>4.6</td>
<td>8.0</td>
</tr>
</tbody>
</table>

NAE = NH₄⁺ + “Titratable acids” – HCO₃⁻

Note: Filtered H⁺ at the glomerulus accounts for a very small % of excreted H⁺ → 36 nM x 180 L/day = 6.48 umol of excreted H⁺ per day

- Renal regulation of acid-base balance involves the following processes:
 o (1) Secretion of H⁺ associated with HCO₃⁻ reabsorption by renal tubules:
 ▪ Majority of HCO₃⁻ is reabsorbed by proximal tubular system → PCT (85%) and TAL (10%):
 ◦ High capacity and low gradient system → Because 3900 mmol H⁺ secreted/day (and 95% filtered HCO₃⁻ reabsorbed) BUT lowest urine pH achieved is only 7
 ◦ In the brush border membrane of PCT tubular luminal cells:
- H⁺ is secreted into the tubular lumen via apical Na⁺/H⁺ antiport → Secondarily active transport dependent on Na⁺ gradient generated by basolateral Na⁺/K⁺ ATPase
- This H⁺ then binds tubular luminal HCO₃⁻ filtered freely at the glomerulus to form H₂CO₃ → brush border CA then catalyses conversion of H₂CO₃ into CO₂ and H₂O, which are reabsorbed into tubular cells
- Within tubular cells throughout the tubular system:
 - H₂O and CO₂ reabsorbed from the tubular lumen is catalysed by intracellular CA into H₂CO₃, which dissociates into H⁺ and HCO₃⁻
 - HCO₃⁻ produced is reabsorbed into the peritubular capillary
 - H⁺ produced is then actively secreted back into tubular lumen where it can – (a) Aid in reabsorbing more HCO₃⁻, or (b) Participate in net acid excretion once all HCO₃⁻ has been bound

- Minority is reabsorbed by distal tubular system → DCT/CCD (5%):
 - Low capacity and high gradient system → Because 420 mmol H⁺ secreted/day (and 5% filtered HCO₃⁻ reabsorbed) BUT urine pH created is as low as 4.5
 - Within “type A intercalated cells”, CO₂ is hydrated to form H₂CO₃ (via intracellular CA) → dissociates into H⁺ and HCO₃⁻
 - H⁺ derived from this reaction is secrete H⁺ into the tubular lumen via apical H⁺ ATPase and H⁺/K⁺ ATPase (primary active transports) → controlled by aldosterone
 - HCO₃⁻ produced via this reaction is absorbed into peritubular capillary

Note – Type B intercalated cells in CCD → secrete HCO₃⁻ produced from IC dissociation of H₂CO₃ via a luminal Cl⁻/HCO₃⁻ exchanger → little importance because:
- (i) Very few type B intercalated cells (more type A cells in CD)
- (ii) Net tubular HCO₃⁻ handling is ALWAYS reabsorption (never secretion)

(2) Formation of titratable acidity:
Once all HCO_3^- in tubular fluid are reabsorbed by H^+ secretion, excess H^+ secreted in tubular fluid are bound to “filtered buffers” in the distal tubular system (DCT and collecting ducts) and excreted in urine:

- (i) Mainly phosphate buffer system \rightarrow H^+ combines 1°ly with HPO_4^{2-} to form H_2PO_4^- (as urine acidity $\sim 4.5 \rightarrow$ close to HPO_4^{2-} buffer pKa of 6.8)
- (ii) Organic buffer systems (Eg. creatinine, sulphate, β-hydroxybutyrate)

Within distal tubular cells, CO_2 is hydrated to form H_2CO_3 (via intracellular CA) \rightarrow dissociates into H^+ (which is secreted into tubular lumen via a secondarily active Na$^+$/H$^+$ anti-port \rightarrow H^+ bind “filtered buffers”) and a newly formed HCO_3^- (which is absorbed into peritubular capillary)

“Filtered buffers” are vital for excretion of “fixed acids” under normal conditions \rightarrow Leads to excretion of 30 mmol of “fixed acids” per day

Note – They cannot be ↑ to excrete additional acid load during acidosis because:

- (i) Availability of filtered buffers cannot be easily ↑ cf. “manufactured buffers” (Ie. phosphate buffer amount is dependent on diet and PTH levels)
- (ii) Buffering capacity of filtered buffers maxed out at ↓ urine pHs

Aside: “Titratable acidity”
- Measured by the amount of alkali (as NaOH) that must be added to urine to return its pH to 7.4 (which is the pH of glomerular filtrate)
- Accounts for only a FRACTION of the H^+ secreted by the kidneys:
 - Accounts mainly for the H^+ that are bound to “filtered buffers” (phosphate and organic buffer systems) and excreted in urine
 - Does not account for HCO_3^- buffer system \rightarrow because H_2CO_3 is converted and reabsorbed as CO_2 and H_2O \rightarrow thus alters urine pH minimally
 - Ammonia buffer system contributes little to “titratable acidity” \rightarrow because of high pKa of buffer system (9.1) (Ie. urine only titrated up to a pH of 7.4 and not any further)

- (3) Ammonia secretion:
 - Once all HCO_3^- in tubular fluid are reabsorbed by H^+ secretion, excess H^+ secreted in tubular fluid are also bound to “manufactured buffers” in the distal tubular system (medullary collecting ducts) and excreted in urine
 - Ammoniagenesis \rightarrow PCT tubular cells produce NH$_3$;
• Filtered glutamine is taken up by PCT tubular cells and deaminated via Glutaminase (which is upregulated with chronic acidosis) into NH$_4^+$ and HCO$_3^-$

• NH$_4^+$ is secreted into the tubular lumen via a Na$^+$/NH$_4^+$ antiport, while “newly formed” HCO$_3^-$ is reabsorbed into peritubular capillary blood

Ammonium cycling → In the TAL of LOH, 80% of tubular NH$_4^+$ is reabsorbed → this generates ↑ gradient of NH$_4^+$ in the medullary interstitium

Ammonium excretion → Later in the medullary CD:
• NH$_3$ diffuses from medullary interstitium into tubular cells of the CD, then into tubular fluid
• Within the tubular cells of the CD, H$^+$ and HCO$_3^-$ is formed by hydration of CO$_2$ using intracellular CA
• H$^+$ secreted into tubular fluid by Na$^+$/H$^+$ antiport → combines with tubular NH$_3$ to form NH$_4^+$ → “ion trapped” in tubular fluid

These “manufactured buffers” are vital for excretion of “fixed acids” under both:
• (a) Normal conditions → Accounts for 40 meq of H$^+$ excretion per day
• (b) Acidotic conditions → Can excrete an additional 300 mmol H$^+$ per day due to:
 o (i) ↑ transfer at low urine pH due to high pKa 9.2 of buffer system (Ie. allows additional H$^+$ to be excreted even when tubular fluid has reached maximal acidity)
 o (ii) ↑ production of glutamine (very slow process)
Only a small amount of H^+ can be excreted in its free form because active transport of H^+ secretion is inhibited at high urinary $[H^+]$. Thus, the lowest urinary pH achieved is 4.4.

As a result, H^+ secretion and excretion in urine is dependent on binding to "urinary buffers":

1. HCO_3^- buffer ($pK_a = 6.1$),
2. HPO_4^{2-} buffer ($pK_a = 6.8$), and
3. NH_3 buffer ($pK_a = 9.1$)

In the absence of these urinary buffer systems, the urine pH of 4.4 would be reached very rapidly, and any further H^+ secretion would cease.

Clinical Effects of Acid-Base Changes:

<table>
<thead>
<tr>
<th>System</th>
<th>Acidosis</th>
<th>Alkalosis</th>
</tr>
</thead>
</table>
| CVS | - Direct −ve inotropic effect:
- Due to ↓ slow inward Ca^{2+} current and ↓ Ca^{2+} release from SR
- Initially opposed by medullary catecholamine response → until pH 7.2 then −ve inotropy
- ↑ SNS activity (medullary catecholamine release):
- Offsets −ve inotropy
- BUT ↑ cardiac arrhythmias, ↑ SVR and renal/splanchnic vasoconstriction
- Cardiac arrhythmias:
- Due to ↓ IC [K+] (↑ RMP of pacemaker cells) and ↑ adrenal medulla catecholamine release
- Vascular effect
- Mild acidosis → ↑ SVR and renal/splanchnic vasoconstriction (due to medullary SNS response)
- ↑ acidosis → Vasodilation (skin, skeletal muscle, heart) and ↓ SVR
- Pulmonary vasoconstriction → HTN | - ↑ coronary VC and ↑ SVR |
| Respiratory | ↑ MV → ↑ response with respiratory acidosis cf. metabolic acidosis b/c CO_2 more permeable than H^+ at BBB
- Bronchodilation (due to hypercapnoea)
- Right shift of O_2 HDC → ↑ O_2 tissue delivery | - Opposite effects to acidosis |
| CNS | Impairs LOC due to changes in CBF and ICP | Epilepsy |
| GIT | - Splanchnic vasoconstriction
- ↓ GIT motility | |
| Electrolyte | ↑ free ionised serum Ca^{2+} → due H^+ competing for −ve binding on albumin (chronically, 2^o to Ca^{2+} mobilisation from bone)
- ↑ serum K^+ → EC H^+ exchanged for IC K^+ (0.6 mmol ↑ [K+] per 0.1 ↓ pH) | - Opposite effects to acidosis |
(d) To explain the principles of blood gas and acid-base analysis.

(e) To interpret blood gas analysis and its management in clinical situations.

Definitions in Acid-Base Disorders:

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acidaemia</td>
<td>Arterial blood pH < 7.36 and [H+] > 44 nmol/L</td>
</tr>
<tr>
<td>Alkalaemia</td>
<td>Arterial blood pH > 7.44 and [H+] < 36 nmol/L</td>
</tr>
<tr>
<td>Acidosis</td>
<td>Abnormal process that tends to ↓ blood pH (i.e., cause acidaemia) if there are no secondary changes in the response to the primary disease</td>
</tr>
<tr>
<td>Alkalosis</td>
<td>Abnormal process that tends to ↑ blood pH (i.e., cause alkalaemia) if there are no secondary changes in the response to the primary disease</td>
</tr>
</tbody>
</table>

Primary aetiological disorder can be either:

- Respiratory: Changes in CO₂ → lead to changes in respiratory acid (H₂CO₃)
- Metabolic: Changes in fixed/metabolic acids or HCO₃⁻

Primary aetiological disorder can also be either:

- Simple: Single primary aetiological acid-base disorder present
- Mixed: > 2 primary aetiological disorders present simultaneously

Assessment of Acid-Base Disorders:

- Assessing an acid-base disorder involves determining the (i) type of primary disorder (acidaemia vs alkalaemia; respiratory vs metabolic; simple vs mixed), (ii) degree of compensation present, and (iii) possible aetiology of the disorder

- This requires information derived from:
 - (1) History and physical examination
 - (2) ABG
 - (a) pH
 - Measured directly using pH electrodes (See below)
 - Assesses acidity or alkalinity of blood
 - (b) PaCO₂
 - Measured directly using CO₂ electrode (See below)
 - Assesses respiratory component of pH shift
 - (c) [HCO₃⁻]
 - Assesses metabolic component of pH shift
 - Measured two ways:
 - (i) Plasma HCO₃⁻ – Measured indirectly with Henderson-Hasselbach equation (using known pH and PaCO₂ measurements) → thus levels inaccurate since pKa used for H₂CO₃ does not account for fluctuations in temperature and PaCO₂
 - (ii) Standard HCO₃⁻ – Defined as [HCO₃⁻] in whole blood which is fully oxygenated with PaCO₂ 40 mmHg and temp 37°C (normally 24 +/- 2 mmol/L) → preferred over plasma HCO₃⁻
 - (d) Base excess (or deficit)
 - Defined as amount of strong acid or base required to titrate fully saturated whole blood at 37 °C and PaCO₂ 40 mmHg to a pH of 7.4 (normally 0 +/- 2 mEq/L)
- Buffer base – Sum of buffer anions [] in blood (Hb, HCO₃⁻, protein, phosphate) in fully oxygenated blood (normally 45-60 mmol/L)
- Base excess – Increase in buffer base → indicates ↑ buffering capacity (Ie. due to ↓ metabolic acids or ↑ in buffer systems)
- Base deficits – Decrease in buffer base → indicates ↓ buffering capacity (Ie. due to ↑ metabolic acids or ↓ buffer systems)

• Can be also used to measure metabolic component of pH shift → preferred over plasma HCO₃⁻

• Assumptions:
 o (i) When pH of blood is normal, ratios and total [] of non-carbonic buffers are normal
 o (ii) Blood behaves as simple HCO₃⁻ solution (Ie. controlled by bicarbonate-carbonic acid buffer system) → so all buffering (and changes in blood pH/[H⁺]) is achieved by changes in HCO₃⁻ levels → thus changes in [HCO₃⁻] reflects amount of acid/base added to blood
 o (iii) It is NOT affected by respiratory acid-base disturbances → because changes in PaCO₂ involves equal changes in plasma levels of H⁺ and HCO₃⁻ from H₂CO₃
• Clinical limitations:
 o (i) It is an in vitro system with a set of assumptions
 o (ii) It does not account for extravascular buffers or interactions of blood buffers with ISF/ICF buffers
 o (iii) Assess only blood buffers (33% of total body buffering capacity)
 o (iv) Tends to overestimate acid-base changes of whole body

- (e) PaO₂
 • Measured directly using Clark electrode (See below)
 • Assesses whether patient is hypoxaemic and has potential respiratory disease (Ie. ↑ A-a PO₂ gradient)
 • When FiO₂ is not known (Ie. assess if breathing supplemental O₂) → utilise Alveolar gas equation to determine PAO₂ → if PaO₂ > PAO₂, likely that patient is using supplemental O₂
- (f) Temperature
 • With ↓ temperature:
 o (i) ↑ gas solubility (CO₂ and O₂) → ↓ PaCO₂ (↓ 4.5% per ↓ 1°C) and ↓ PaO₂
 o (ii) ↑ pH
 • Neutral H₂O: pH ↑ 0.017 unit per ↓ 1°C
 • Blood: pH ↑ 0.015 unit per ↓ 1°C (Rosenthal correction factor) → Different from neutral H₂O due to imidazole moieties of histidine in Hb
 • Consequence → Assessment of blood at 37°C from hypothermic patient can lead to falsely ↑ PO₂ and PCO₂ and falsely ↓ pH → thus above “correction factors” are applied to avoid this
Note – There are two means to correct for temperature changes:

(i) α-stat hypothesis
- Refers to the theory that the degree of ionisation of imidazole groups should remain constant despite changes in temperature whilst keeping CO₂ stores constant (i.e. pH changes with temp)
- So with ↓ temp → pKa of imidazole groups on proteins will ↓ → % unprotonated imidazole groups remain constant → thus, no change in CO₂ stores
- Blood sample is heated to 37°C and is interpreted against values at that temperature irrespectively of what the patient’s temperature is

(ii) pH-stat hypothesis
- Refers to the theory that pH should remain constant despite changes in temperature
- To overcome ↑ CO₂ with ↑ temp → CO₂ is added to system to maintain a constant PCO₂ ~ 40mmHg → thus, there is an overall ↑ in CO₂ stores
- Blood sample is measured against normalised values at 37°C regardless of what the patient’s temperature is (as there is no change in pH with temp change)

- (g) FiO₂
- (h) SaO₂

- (3) Biochemistry laboratory results → used to determine:
 - (a) Anion gap (AG):
 - AG represents all the unmeasured anions in plasma (sulphates, phosphates, organic acids, proteins) → normally 12 +/-2 mmol/L
 - \[\text{AG} = [\text{Na}^+ + \text{K}^+] - [\text{Cl}^- + \text{HCO}_3^-]\]
 - Nb. An AG arises because routine clinical electrolyte measurements include most cations (Na⁺ and K⁺) but only some anions (Cl⁻ and HCO₃⁻) → thus, several anions in plasma remain unmeasured. Since the law of electroneutrality states that sum of +ve charges is balanced by sum of –ve charges, the AG is the “apparent” difference between the total measured cation [] and total measured anion []

- (b) Osmolar gap (OG):
 - OG is the difference between measured and calculated serum osmolality (normally < 15 mOsm/kg)
 - Assist in differentiating causes elevated AG metabolic acidosis (i.e. ↑ with presence of circulating intoxicants, such as methanol)
 - \[\text{OG} = \text{“Measured” serum osmolality} - \text{“Calculated” serum osmolality}\]
 - Where “calculated” serum osmolality = 2x[Na⁺] + [urea] + BSI.
Types of Acid-Base Disturbances:

(I) Respiratory acidosis:
- Defined as a primary acid-base disorder due to rise in PaCO₂ to level higher than expected (i.e., ↑H₂CO₃)
- Causes:
 o Alveolar hypoventilation (i.e., ↓MV, ↑dead space)
 o ↑inspired PCO₂ (Eg. CO₂ absorber saturated)
 o ↑CO₂ production (Eg. fever, TTX, MH)
- Buffering/compensatory response:
 o Acutely → Buffering (mainly IC buffers) and respiratory correction (↑MV)
 o Chronic:
 ▪ Renal compensation by retention of HCO₃⁻ – ↑PaCO₂ causes proximal tubular cells to ↑H⁺ secretion → ↑production of HCO₃⁻
 ▪ ↓plasma Cl⁻ – Net renal H⁺ excretion causes Cl⁻ to maintain electroneutrality → leads to +ve BE
- ABG findings:

<table>
<thead>
<tr>
<th></th>
<th>Acute</th>
<th>Chronic</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>↓ (expect 7.25 @ PaCO₂ 60; 7.15 @ PaCO₂ 80)</td>
<td>Normalises (but < 7.4)</td>
</tr>
<tr>
<td>PaCO₂</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>BE</td>
<td>Normal</td>
<td>+ve</td>
</tr>
</tbody>
</table>
| HCO₃⁻ | ↑ (expect compensation if [HCO₃⁻]) | ↑ (expect compensation if [HCO₃⁻] ↑ by 4)
(II) Respiratory alkalosis:
- Defined as a primary acid-base disorder due to fall in PaCO₂ to a level lower than expected (Ie. ↓ H₂CO₃)
- Causes:
 o Invariably due to alveolar hyperventilation (Ie. ↑ MV, ↓ DS)
 o ↓ CO₂ production (Eg. GA, hypothermia)
- Buffering/compensatory response:
 o Acutely → Buffering (mainly IC buffers) and respiratory correction (↓ MV → but limited by need to maintain oxygenation!)
 o Chronic → Renal compensation by ↑ HCO₃⁻ excretion and ↓ NH₄⁺ excretion (Ie. net H⁺ retention/HCO₃⁻ loss) → -ve BE and ↓ serum HCO₃⁻
- ABG findings:

<table>
<thead>
<tr>
<th></th>
<th>Acute</th>
<th>Chronic</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>↑ (expect 7.5 @ PaCO₂ 30; 7.6 @ PaCO₂ 40)</td>
<td>Normalises (but > 7.4)</td>
</tr>
<tr>
<td>PaCO₂</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>BE</td>
<td>Normal</td>
<td>-ve</td>
</tr>
<tr>
<td>HCO₃⁻</td>
<td>↓ (expect compensation if [HCO₃⁻])</td>
<td>↓ (expect compensation if [HCO₃⁻] ↓ by 5 mmol/L for each 10 mmHg ↓ PaCO₂ above 40 mmHg)</td>
</tr>
</tbody>
</table>

- Treatment → Correct underlying cause

(III) Metabolic acidosis:
- Defined as a primary acid-base disorder that causes plasma HCO₃⁻ to fall to a level lower than expected due to either (i) an increase in metabolic/fixed acids, and/or (ii) loss of bases in blood
- Causes:
 o ↑ AG → Due to replacement of HCO₃⁻ with fixed/metabolic acids (which are unmeasured anions) → MUD PILES
 o Normal AG → Usually associated with hyperchloraemia → GI losses (diarrhoea, pancreatic fistula, external drainage of pancreatic/biliary secretions, uretero-enterostomy, obstructed ileal conduit), RTA, renal interstitial disease, mineralocorticoid deficiency, infusion of HCl/NH₄Cl or CAi (acetazolamide)
 o ↓ AG → Hypoproteinaemic states
- Buffering/compensatory response:
 o Acutely:
 ▪ Buffering (60% IC buffers; 40% EC buffers)
 ▪ Respiratory compensation
 • Initially – ↓ pH triggers peripheral chemoreceptors → hyperventilation → ↓ PaCO₂ to partly normalise pH
 • BUT this ↓ brain ECF [H⁺] and causes central chemoreceptors to limit the ↑ in MV
 • Full effect of respiratory compensation requires 12-24 hrs – HCO₃⁻ equilibrates across BBB and brain ECF [H⁺] ↑ → inhibition on MV by central chemoreceptors gradually removed
 • Nb. Respiratory compensation CANNOT excrete fixed acids!
 o Chronic → Renal compensation by excreting excess acid anions (equivalent to reabsorption of HCO₃⁻/excretion of H⁺)
- ABG findings:

<table>
<thead>
<tr>
<th></th>
<th>Acute</th>
<th>Chronic</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>↓</td>
<td>Normalises (but < 7.4)</td>
</tr>
</tbody>
</table>
| PaCO₂| Normal| ↓ (expect compensation if PaCO₂ is
BE -ve ↓
HCO₃⁻ -ve ↓↓

- Treatment:
 o (i) Eliminate causative factor
 o (ii) IV NaCl → allows kidneys to excrete sufficient HCl to correct acidosis (if acidaemia is not affecting C.O.)
 o (iii) IV HCO₃⁻ (if acidaemia depressing C.O. → avoid vicious cycle of worsening CVS depression with increasing lactic acidosis)
 o (iv) Dialysis

(IV) Metabolic alkalosis:
- Defined as a primary acid-base disorder that causes plasma HCO₃⁻ to rise to a level higher than expected due to either (i) an gain in bases, and/or (ii) loss of metabolic/fixed acids in blood
- Causes:
 o Loss of acids → Renal (hyperaldosteronism, Cushing’s, thiazide diuretics, severe hypokalaemia, hypomagnesiusma, hypercalcaemia) or GIT (NG suctioning, severe vomiting)
 o Increased base intake → NaHCO₃ administration, metabolic conversion of exogenous organic ions (Eg. Lactate)
- Buffering/compensatory response:
 o Acutely → Buffering (70% EC buffers; 30% IC buffers) and respiratory compensation (↓ MV)
 o Chronic → Renal compensation by excretion of excess HCO₃⁻/retention of H⁺
- ABG findings:

<table>
<thead>
<tr>
<th></th>
<th>Acute</th>
<th>Chronic</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>↑↑↑</td>
<td>↑↑↑ (but > 7.4)</td>
</tr>
<tr>
<td>PaCO₂</td>
<td>Normal</td>
<td>↑ (expect compensation if PaCO₂ is 0.7x[HCO₃⁻] + 20)</td>
</tr>
<tr>
<td>BE</td>
<td>+ve</td>
<td>+ve</td>
</tr>
<tr>
<td>HCO₃⁻</td>
<td>↑↑↑</td>
<td>↑↑↑</td>
</tr>
</tbody>
</table>

- Treatment:
 o (i) Eliminate causative factor
 o (ii) Replace volume deficit with NaCl → allows excretion of NaHCO₃
 o (iii) IV NH₄Cl (if very severe alkalosis or poor renal/cardiac function)
 o (iv) IV HCl avoided due to very low pH and need for administration by CVC only
 o (v) CAi (Eg. acetazolamide)
 o (vi) Spironolactone (to ↑ K⁺)
Aside: Measurement of pH, PCO\textsubscript{2} and PO\textsubscript{2} from ABG

Measurement of pH: pH electrode (Glass-Calomel electrode)

- Consists of two ion-selective electrodes:
 - (i) Measuring electrode
 - Ag/AgCl surrounded by buffer solution in glass casing \(\rightarrow \) glass bulb at electrode tip made of special pH-sensitive glass (-vely charged glass that is permeable to H^+) that is in direct contact with arterial blood sample
 - H^+ diffuses from blood sample through the glass membrane into buffer solution \(\rightarrow \) buffer solution allows a pH (and $[H^+]$) gradient to form across the glass membrane \(\rightarrow \) produces an electrical potential difference that is dependent on the pH (and $[H^+]$) gradient
 - (ii) Reference electrode
 - Hg/Hg\textsubscript{2}Cl\textsubscript{2} (calomel) surrounded by saturated 0.1 M KCl solution ("salt bridge") that is separated from the arterial blood sample via a semi-permeable membrane
 - Maintains constant potential despite changes in arterial pH
- These two electrodes are connected via blood to create an electrical circuit \(\rightarrow \) electrical potential difference produced is proportional to pH (and $[H^+]$) gradient \rightarrow 61.5 mV/pH unit
- It has an accuracy of +/- 0.005 pH units
- Issues:
 - (i) Both electrodes must be:
 - Kept at 37°C \(\rightarrow \) due to temperature-dependent changes in pH (acid/bases dissociate at \(\uparrow \) temperatures \(\rightarrow \) so pH \downarrow 0.015 unit per \(\uparrow \) 1°C \rightarrow Rosenthal factor) and solubility of gases (Ie. CO\textsubscript{2})
 - Kept clean (esp free from protein and cellular deposits)
 - Calibrated with 2x PO\textsubscript{4}3- buffer solutions of known pH
 - (ii) Delicate plastic membrane \rightarrow damage leads to inaccurate results (due to protein or microorganism contamination of electrodes)

Measurement of PCO\textsubscript{2}: CO\textsubscript{2} electrode (Severinghaus electrode)

- Modified pH electrode \rightarrow two ion-selective electrodes contained in a CO\textsubscript{2}-permeable plastic membrane (not permeable to liquids and solids, such as proteins) that separates them from blood sample:
 - (i) H^+-sensitive glass electrode \rightarrow covered in nylon mesh and coated in thin film of NaHCO\textsubscript{3} solution
 - (ii) Ag/AgCl reference electrode
- CO₂ diffuses from blood sample across plastic membrane into the NaHCO₃-coated nylon mesh → CO₂ hydrated to form H⁺ and HCO₃⁻ → glass electrode measures change in H⁺ (and pH) in NaHCO₃ solution, which is proportional to changes in CO₂ tension
- It has an accuracy of +/- 1 mmHg
- Issues:
 - (i) Slow response time (2-3 mins) → because CO₂ needs to diffuse across membrane and react with H₂O to form H⁺ and HCO₃⁻ (Nb. Can be accelerated by addition of CA)
 - (ii) Delicate plastic membrane → damage leads to inaccurate results
 - (iii) Both electrodes must be kept at 37°C, clean (i.e. free from protein deposits) and calibrated with buffer solutions of known PCO₂

Measurement of PO₂: O₂ electrode (Clark electrode)

- Cathode (Pt wire in glass rod) and anode (Ag wire in AgCl gel) placed in KCl solution → this is wrapped in an O₂-permeable plastic membrane (not permeable to liquids and solids, such as proteins) that separates electrodes from blood sample
- O₂ diffuses across membrane from blood sample to equilibrate with electrolyte solution → potential difference of 600 mV is then applied to electrodes → causes an electron flow from anode to cathode as per the following reactions:
 - At cathode: O₂ + 2 H₂O + 4e⁻ → 4 OH⁻
 - At anode: Ag + Cl⁻ → AgCl + e⁻
 - In solution: KCl + OH⁻ → KOH + Cl⁻
- Only at an applied voltage of 600 mV → current generated in circuit is directly proportional to PO₂ (i.e. linear relationship)
- It has an accuracy of +/− 2 mmHg
- Issues:
 o (i) Electrodes → must be kept at 37°C, clean and contaminant-free (i.e. free from protein deposits and O₂-consuming cells/microorganisms), and calibrated with solutions of known PO₂ (with N₂ as zero-point)
 o (ii) Delicate plastic membrane → damage leads to inaccurate results (due to protein or microorganism contamination of electrodes)
 o (iii) Halothane can produce falsely ↑ PO₂ readings → avoid this issue by using membrane impermeable to it
 o (iv) Avoid delay in sample analysis → cells consume O₂ which causes falsely lower PO₂ (Nb. store sample in ice to retard cell O₂ consumption)
 o (v) Applied voltage must be 600 mV → this is b/c:
 ■ (a) Calibration curve of current vs. PO₂ is linear
 ■ (b) Relationship of current and voltage is non-linear at a given PO₂, EXCEPT within a plateau region (400-800 mV) → in this range, current flow for a given PO₂ is not altered by small changes in applied voltage (i.e. less likely that fluctuations in applied voltage will bias PO₂ readings)